Analyzing segment content by block type

Occasionally one might want to know what a segment is made of in terms of block types. For example, you notice that the number of blocks in an index segment is somewhat larger than the number of branch and leaf blocks, and wonder what kind of blocks accounts for the difference. The only way to do this is by dumping index blocks (e.g. as described in Richard Foote’s blog here). Dumping blocks is easy, but analyzing them — not so much. Sure, there exists a plethora of tools that allow to parse text from the OS side (awk, perl, sed and whatnot), but this leads to usual problems: OS access, scripting skills, certain platforms may not have the scripting tool you’re most comfortable with, and even more importantly: scripts cannot do cool stuff that Oracle can (like joining data to other data) . Fortunately, those difficulties can be circumvented by using regexp + external files as I already posted in my blog here. This time, I’d like to show how this technique can be adjusted for index block dumps.

Continue reading “Analyzing segment content by block type”

MOS “log file parallel write” reference note updated

Last year, I spent some time researching redo log related performance problems, which resulted in a mini-series, including one post devoted specifically to one previously unknown scenario of excessive log file sync waits. I am happy to announce that a service request opened on the back of this research resulted in the MOS note on “log file parallel write” wait event (Doc ID 34583.1) having been updated with a general description of this scenario and factors that may contribute to it. Unfortunately, more specific information regarding this issue has been put to an internal Oracle note because of the limitations that concern underscore parameters. So if you are dealing with log file sync (or log buffer space) issues, then I strongly recommend to log in to MOS and familiarize yourself with the updated version of the note as soon as possible.

Logical I/O

Except a few special cases, optimizing SQL is about minimizing I/O. And by “I/O” we normally mean “physical I/O”, because everybody knows that logical I/O (LIO) is much, much faster. But how much faster exactly? For a long time, this question has been bothering me. It looks like there has been little research in this area. Basically the only thorough investigation I managed to find on the subject was one by Cary Millsap and co-authors. So I conducted some research on my own. Continue reading “Logical I/O”

High CPU during I/O (continued)

Last week I posted a blog on high CPU utilization during I/O. The blog title contained a question mark because it seemed like there were more questions than answers. Were the CPU utilization numbers real or just an instrumentation artifact? Were they distorted by double-counting? If real, where was it coming from? About a dozen top experts participated in that discussion, and everybody had a different theory. I’ve spent some time looking at the problem on different test environments from the OS angle, so now I have some answers I’d like to share.

Continue reading “High CPU during I/O (continued)”